May 30, 2000

DSSD CENSUS 2000 PROCEDURES AND OPERATIONS MEMORANDUM SERIES R-32

MEMORANDUM FOR

Maureen Lynch

Assistant Division Chief, Coverage Measurement Processing

Decennial Statistical Studies Division

David Whitford

Assistant Division Chief, Statistical Program Management

Decennial Statistical Studies Division

From:

Donna Kostanich AK

Assistant Division Chief, Sampling and Estimation

Decennial Statistical Studies Division

RDC

JEP

Prepared by:

Ryan Cromar and James Farber

Sample Design Team

Decennial Statistical Studies Division

Subject:

Accuracy and Coverage Evaluation Survey: Large Block Cluster

Subsampling Approval and Summary of Results

I. INTRODUCTION

The Sample Design Team approves the results of the Census 2000 Accuracy and Coverage Evaluation (A.C.E.) large block cluster subsampling operation for release to persons who need this information to carry out A.C.E. operations. These results include the 76 relisted clusters. The information reflecting the large block cluster subsampling operation is included in the sample design file, subsampled preliminary enhanced list, and large block cluster subsampling segment file. Approvals of large block cluster subsampling have previously been given since this was a continuous operation. The intent of this document is to formalize and distribute the final results.

The A.C.E. survey will be used as a quality check for Census 2000. An independent list of addresses was developed in a sample of block clusters previously selected under the Integrated Coverage Measurement (ICM) 750,000 housing unit design. Results of the listing sample selection are documented in reference 1. Another step needed to attain the A.C.E. sample from the ICM sample is the A.C.E. reduction, in which the listing sample block clusters are subsampled. Results of the A.C.E. reduction are documented in

reference 2. The final step before large block cluster subsampling is small block cluster subsampling, in which the number of small block clusters in the A.C.E. sample is reduced. Results of small block cluster subsampling are documented in reference 3. Finally, large block cluster subsampling is done to obtain the A.C.E. interview sample.

During large block cluster subsampling, if a non-American Indian Reservation (AIR) block cluster has 80 or more A.C.E. housing units on the preliminary enhanced list (PEL), then the housing units in the cluster are subsampled by forming segments of adjacent housing units and selecting segments for the A.C.E. sample. Sampling rates were determined within each A.C.E. reduction stratum and state so that 1) there would be close to equal weighting between medium and large block clusters within a reduction stratum in a state and 2) previously computed state targeted housing unit sample sizes would be attained to the extent possible. The results of creating the sampling rates are documented in reference 4. The large block cluster subsampling process is documented in reference 5.

Section II of this memorandum and its attachments contain summary statistics of the operation. The final A.C.E. sample is contained in the output files described in Section III. Any questions regarding large block cluster subsampling should be directed to Ryan Cromar (301-457-1636), James Farber (301-457-4282), or Deborah Fenstermaker (301-457-4195) of the Decennial Statistical Studies Division.

II. RESULTS

For the overall United States, 11,303 block clusters with 300,913 housing units are in the A.C.E. sample after large block cluster subsampling, plus 499 clusters and 13,736 housing units in Puerto Rico. The housing unit totals are smaller than the targeted totals. The targeted housing unit totals are 305,092 for the United States and 14,687 for Puerto Rico as documented in reference 6. Note that the national target is higher than the commonly used 300,000 housing unit figure, for reasons discussed below. The results of the A.C.E. sample after large block cluster subsampling for each state and the nation are summarized in Table 1 in Attachment 1. Most states have actual interview housing unit totals that are less than the targeted state totals. Figure 1 shows the distribution of the interviewing workload in each block cluster.

The sample target was set higher than 300,000 housing units to allow for the uncertainty inherent in the status of each A.C.E. housing unit, which is updated throughout the various phases of A.C.E. sampling and processing. The target for each reduction stratum and state was determined using independent list (IL) housing unit counts, while the actual sample was selected from the PEL housing units. A number of factors could cause the PEL housing unit counts to differ from the IL housing unit counts. The IL was the input to housing unit matching and follow-up, while the PEL was the output. During housing unit matching and follow-up, IL housing units could be removed from the A.C.E. if they

were found not to exist, to be commercial addresses, or for other reasons. If a cluster was relisted, the housing unit counts could also be different. The sample targets excluded housing units with a status of future construction since these units were deemed more likely to be found not to exist during housing unit follow-up and thus would not be a part of the large block cluster subsampling universe. However, the targets include all other housing unit statuses, some of which may have been removed from the A.C.E. during housing unit follow-up. For instance, housing units with a status of under construction or unfit for habitation were still considered in determining the sample target. Even though some housing units that were previously listed as future construction were completed between independent listing and housing unit follow-up, more housing units with the other housing unit statuses were reclassified as non-housing units during follow-up. Therefore, the net effect for most states is that the actual housing unit sample is smaller than targeted. However, the final interviewing workload still achieved the original 300,000 housing unit total because the targets were set higher to allow for the net loss in the number of A.C.E. housing units due to housing unit follow-up.

There were 11 states where the interview housing unit sample is larger than targeted. From Table 1, these states are Arkansas, the District of Columbia, Idaho, Maine, Massachusetts, Montana, Nevada, South Carolina, Utah, Vermont, and Wyoming. Some clusters in these states were targeted to be subsampled because the IL had 80 or more housing units. However, since the PEL housing unit count was less than 80, all of the housing units in these clusters were retained. That often meant an increase in the number of housing units that would be interviewed in those clusters. Another reason for the larger sample is that some very large block clusters had two segments selected. For instance, South Carolina had a cluster with a total PEL count of 3,034 and two of the seven segments were selected from that cluster. If one segment had been selected from that cluster, then the actual housing unit sample in South Carolina would have been smaller than targeted.

The sampling weights after large block cluster subsampling are summarized with tables and figures in Attachment 2. Figure 2 shows the distribution of the cluster weights. About 94 percent of the block clusters have weights that are less than 700. In general, the weights over 700 are from small block clusters, which usually contain few housing units. This is particularly true for those clusters with weights over 1000. As shown in Figure 3, the distribution of housing unit weights, more than 99 percent of the housing units in the interview sample have weights that are less than 700.

The remaining figures in the attachments are boxplots that present the following statistics. The median, or the 50th percentile, is the white horizontal line inside each box. This means 50 percent of the clusters have weights below the median, and 50 percent have weights above. The 25th and 75th percentiles are the lower and upper borders, respectively, of the shaded boxes. The upper and lower whiskers represent either the extreme values of the distribution or the median +/- 1.5 times the interquartile range

(IQR), whichever lies closer to the median. The IQR is the difference between the 75th and 25th percentiles. Lines beyond the whiskers represent potential outlier weights. Under a normal distribution, about 99.3 percent of the cluster weights would fall between the whiskers. The mean cluster weight is represented by a horizontal dashed line running across the boxplots. Each mean is calculated independently based on the distribution depicted in the boxplots. For example, in Figure 7, the mean is based only on the distribution of large cluster weights. An "H" symbol on a boxplot represents a point estimate that has no variation.

Figure 4 has boxplots showing the distribution of weights by sampling stratum. This figure shows that weights from small block clusters are generally higher than weights from medium and large clusters, which is acceptable because there are usually fewer housing units in small clusters. Also, the boxplots show there is relatively equal weighting between medium and large block clusters. One can also see these patterns for each state in Figures 5, 6, and 7, where boxplots show the size and distribution of weights by state for small, medium, and large block clusters, respectively. More details of all the weights from medium and large block clusters are summarized in Table 2. Weights from small block clusters are summarized in Table 3.

For the most part, block clusters went through expected paths during the A.C.E. sampling process. However, since updated measures of size were available at each phase of sampling, the number of housing units in a cluster could change from phase to phase, which would occasionally send clusters down uncommon paths. For instance, Table 2 shows one block cluster in Washington State that was a medium block cluster based on the early census address list and on the preliminary IL but had 80 or more housing units on the PEL. Therefore, the cluster was subsampled in large block cluster subsampling and received a much greater weight than expected. Similarly, a number of clusters were large based on the early census address list and on the preliminary IL but had fewer than 80 housing units on the PEL. These clusters were not subsampled in large block cluster subsampling and received smaller weights than expected. This also caused an increase in sample size in some states.

The weights from the AIR clusters are plotted in Figure 8 and presented in Table 4. Note that Figure 8 includes only those states that have AIR clusters. Generally, the AIR weights are lower than non-AIR weights to ensure accurate AIR population estimates. The AIRs have a separate listing sample of 355 medium and large clusters with no further reduction or subsampling. Therefore, the plot shows no weight variation for AIRs in each state. The small AIR clusters in Table 4 were part of the general small cluster sampling stratum and thus have higher weights than medium and large AIR clusters. The weights from block clusters in Puerto Rico are in Table 5.

Figure 9 shows boxplots combining the cluster weights from the four sampling strata within each state. Note that small population states (e.g., Alaska, Delaware, Hawaii,

Rhode Island, South Dakota, Vermont) have comparatively smaller weights than other states. Because the minimum state sample size is 1800 housing units, the smaller states have larger samples than they would have received under sampling with probability proportional to size.

Figure 10 presents the medium and large cluster weights for the five major reduction strata: minority, low inconsistent, high inconsistent, consistent, and medium stratum jumpers. One goal of the A.C.E. sample design was to reduce weights for clusters that have high concentrations of traditionally undercounted population groups and for clusters that may be more likely to have coverage errors. As shown in Figure 10, the weights for minority clusters are generally lower than the consistent stratum weights, as are the weights for the two inconsistent reduction strata, where coverage problems might occur. Similarly, the weights for medium stratum jumper clusters are comparatively low. All stratum jumper clusters were retained in the A.C.E. medium and large cluster reduction to avoid excessively large weights for these clusters after large block cluster subsampling.

Attachment 3 presents summary statistics for the three major Types of Enumeration Area. Table 6 presents the distribution of A.C.E. interview sample by Type of Enumeration Area. Figure 11 shows that the List/Enumerate clusters generally have smaller weights than the other Types of Enumeration Area, which is by design. List/Enumerate clusters were placed in the high inconsistent reduction stratum and thus were generally retained at higher rates than clusters in the other strata in the A.C.E. reduction because they are not eligible for Targeted Extended Search. But the nature of these areas (e.g., hard to access remote areas) is such that they may be subject to coverage problems. Table 7 in Attachment 4 shows A.C.E. Regional Office (ACERO) cluster and housing unit totals.

III. OUTPUT FILES

An output of large block cluster subsampling is information for the Field Division (FLD) to assist in the planning of person interviewing. Twelve Quattro Pro spreadsheets, one for each ACERO, were provided on diskettes to Neala Stevens of the FLD. Puerto Rico will be included in the Boston ACERO spreadsheet. These spreadsheets are named intRO_2.WB3, where RO is the two-digit ACERO code. Each spreadsheet will contain the following variables in order for each cluster:

- ACERO Abbreviation
- FIPS State Code
- FIPS County Code
- Local Census Office Code
- A.C.E. Cluster Number with Check Digit
- Targeted number of interview housing units as documented in Reference 6
- Actual number of interview housing units

Each spreadsheet is sorted by state, county, and A.C.E. cluster number with check digit. The information contained in these spreadsheets is confidential and protected by Title 13 of the U.S. Code. Access to this information is administratively restricted to authorized A.C.E. staff.

IV. REFERENCES

- DSSD Census 2000 Procedures and Operations Memorandum Series R-16, "Accuracy and Coverage Evaluation Survey: Initial Listing Sample Results," June 25, 1999.
- 2. DSSD Census 2000 Procedures and Operations Memorandum Series R-23, "Accuracy and Coverage Evaluation Survey: Approval and Summary of Results of the Reduction Sample," January 21, 2000.
- 3. DSSD Census 2000 Procedures and Operations Memorandum Series R-25. "Accuracy and Coverage Evaluation: Small Block Cluster Subsampling Approval and Summary of Results," February 10, 2000.
- 4. DSSD Census 2000 Procedures and Operations Memorandum Series R-28, "Accuracy and Coverage Evaluation Survey: Approval and Summary of Large Block Cluster Subsampling Parameter File," March 10, 2000.
- 5. DSSD Census 2000 Procedures and Operations Memorandum Series R-27, "Accuracy and Coverage Evaluation Survey: Large Block Cluster Subsampling Specifications," March 8, 2000.
- 6. DSSD Census 2000 Procedures and Operations Memorandum Series R-30, "Accuracy and Coverage Evaluation Survey: Transmittal of Estimated Interview Workload After Large Block Cluster Subsampling," March 21, 2000.
- cc: DSSD Census 2000 Procedures and Operations Memorandum Series Distribution List Statistical Design Team Leaders
 A.C.E. Implementation Team
 Sample Design Team

Table 1. Summary Statistics for Block Clusters and Housing Units

 •	- 80		9	9	-					_ - ത	~	7					 	٠.		4	6	4 0		_			9	4 c	ų 0		_	- -	- u	· •	 e			و	~				_	_
Interview	4,58	1,82	7,936	2,62	47,55	4,109	, a	7001	15,361	7,85	3.91	1,96	12,39	6,092	2010	4,127	4,476	1,886	6.335	10,244	5,159	3,034	2,766	1,967	2,097	8,34	3,686	26.0	2.23	11,53	3,761	4.01	1,805	4 33	2,27	5,955	2.46	1,816	6,982	1 925	5 705	1,910	305,092	14 69
Interview HUs	4,450	1,739	7,667	2,716	130,527	20,10	3,243	100	15, 254	7,762	3,603	1,995	12,365	5,945 00.0	2.666	3,979	4,417	1,932	6,393	096'6	5,154	2, 20 50.00 4.00	2,800	1,961	2,114	8,271	3,588	18,691	2,184	11,342	3,666	3,472	1,774	4,499	2,177	5,819	2,486	1,916	6,887	1 877	5,509	1,918	300,913	19 726
HUs in 80+ Clusters	1,503	587	2,474	921	9.0.4	2 .	2/21	780	6.518	3 072	2,447	342	3,855	1,73	552	1,372	1,386	351	1,893	2,756	1,420	2.120	654	225	678 678	2,902	988	9,390	5 4 4 0	3,973	970	2,000	574	1,994	520	7 331	846	571	3,122	2,043	1, 186	527	109, 119	660
MUs in 80+ Clusters	7,567	3,222	15,992	3,742	480,07	0,040	3 285	2021.9	60,029	19,518	20,513	2,622	18,550	3,755	2,948	9,150	6,520	1,863	9,290	11,849	6,898	11,142	2,740	1,328	3,036	13,892	3,527	18 921	1,924	21,621	5,118	13,801	2,664	9,122	2,551	9,674	4,723	3,024	19,854	4 610	5,660	1,568	613,769	
HUS in 1-79 Clusters	2,947	1,152	5,193	1,795	900'97	2007	1,971	100	8.736	4,690	1,156	1,653	6,510	2,162	2,114	2,607	9,031	2.574	4,500	7,224	3,734	3,389	2,146	1,736	14.1	5,369	2,600	9,301	1,780	7,369	2,696	9.463	1,200	2,505	1,657	1,071	1,640	1,345	3,765	100,1	4,323	1,391	191,794	600
Total Clusters	161	02	322	90.	1,01	3 :	- 99	80 40	533	276	121	107	403	122	117	158	661	165	210	343	203	188	139	8 3	92	258	212	276	121	379	232	428	69	142	136	793	107	75	228	62.	211	139	11,303	
80+ Clusters	46	21	20	77.	? ¥	5 6	2.5	53	203	93	74	5	= \$	7 5	5	47	4 .	2 4	29	79	2 5	2 4	17	- 3	23 23	83	25	260	4	117	33	5 8	50	33	4 :	204	27	82	- - - - - - - - - - - - - - - - - - -	3 8	37	13	3,183	
1-79 Clusters	106	43	204	//	566	3	5 E	92	298	167	4	62	276		85	101		87	144	248	96	130	5	9	. 4. 	163	711	165	88	248	131	329	46	06	40	477	56	52	145	<u> </u>	163	65	6,935	CLC
0 Clusters	o	တ	59	7 1 C	2 6	3 "	o en	e 2	32	16	G	စ္တ ႏ	5 5	2 9	17	5	4 4	<u>5</u> 4	. ~	16	25	° =	E	5 20	, 4	12	28	16	19	4	20	4 12	ဗ	13	78	s <u>1</u>	24	νn .	= =	- k ^a) [61	1,185	Š
_	_	—			41.	+10		ر د ور د	;	-	_					_			usetts	·—·			· -		pshire	sey	100	arolin i	akota		 ea	vania	sland	Carolin	akota					roinia	tn t	-	States	-
State	Alabama	Alaska	Arizona	Arkansas Colifornia	Colorado	Connections	Delaware	District	Florida	Georgia	Hawaii	Idaho	1111018	TOWA	Kansas	Kentucky	Louisiana Maina	Maryland	Wassachusetts	Wichigan	Minnesota Kiesissiooi	Missouri	Montana	Nebraska	Vew Hampshire	New Jersey	New Mexico	North Carolin	North Dakota	Ohio	Oklahoma Oregon	Pennsylvania	Rhode Island	South Ca	South Dakota Teggeses	Texas Texas	Utah	Vermont	Virginia Weshington	Mest Virginia	Wisconsin	Wyoming	United States	O. Change

Figure 1. Distribution of Cluster Interview Sample Cluster Interview Sample Size S ဖ 4000- Number of Clusters

Figure 2. Distribution of A.C.E. Cluster Weights 45 10 24 16 35 Cluster Weight

Number of Clusters

Housing Unit Weight

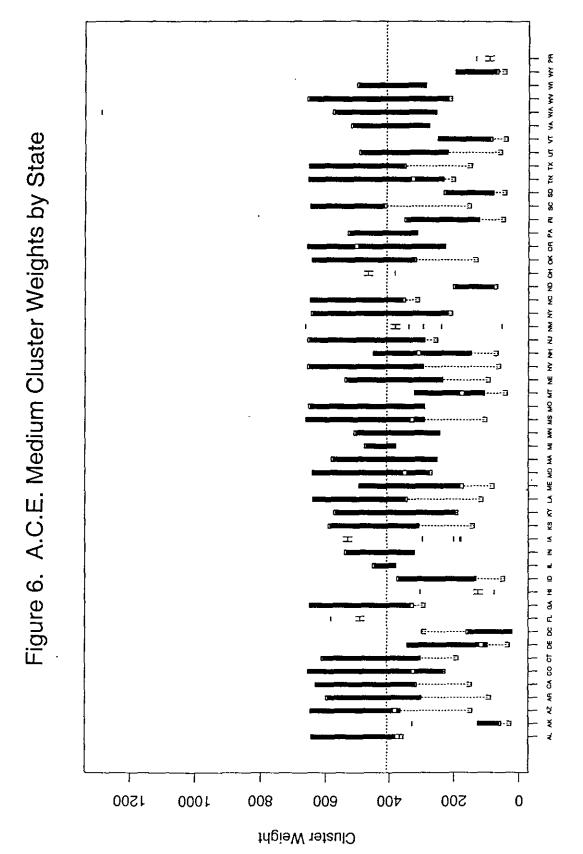

Figure 3. Distribution of A.C.E. Housing Unit Weights 4000¢ Number of Housing Units

Figure 4. A.C.E. Cluster Weights by Sampling Stratum AIR Large Medium Small 1500 1000 008 009 00₺ 200 0 Cluster Weight

Sampling Stratum

TN TX UT YT VA WA WY WI WY PR Figure 5. A.C.E. Small Cluster Weights by State NM NY NG ND OH OK OR PA AL AK AZ AR CA CO OT DE DO PL 1500 1000 008 00t 500 009 0 Cluster Weight

State

State

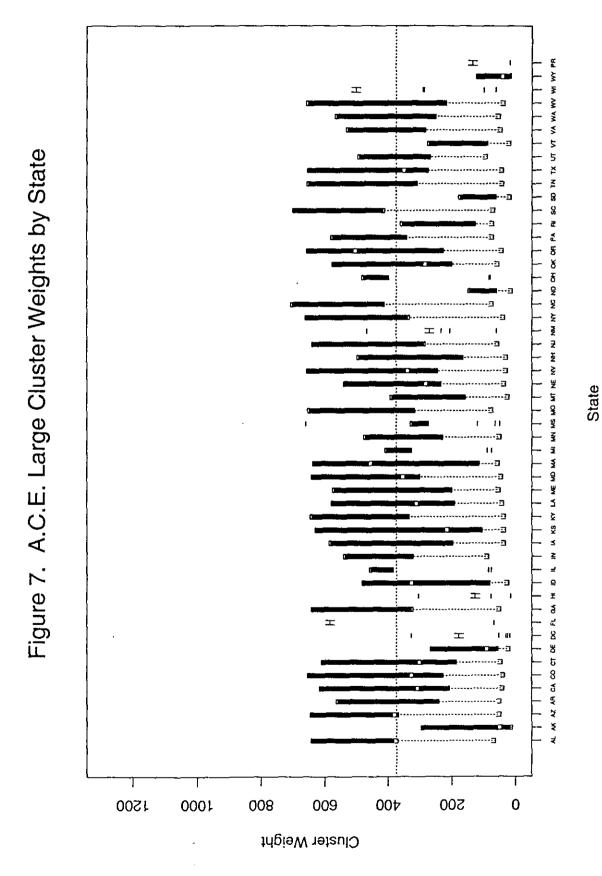


Table 2. Medium and Large Block Cluster Weights by Reduction Stratum and Large Block Cluster Subsampling Stratum

			_	— ;						_		_										-		_	_	-							-	_		—	_								-			
1	I High	•	٠	•		50.13	43.21	18.27		66.66	٠	•	•	. ;	63,42	•	•	•		• •	50.35	•	45.24	•	69.36	•	31.24	26.21	. 13	7		•	11.33	77.63	•	•	•	•	•	•	•	•		•	•	-		13.61
Large Not LBCS	Con	109.38	•	93.60	109.92	96.69	114.26	52.79	52.65	99.99	93.57	•	86.04	83.79	26.76	102.03	66.69	108.59	96.72	95.01	113.28	87.37	87.96	118.41	108.99	•	91.48	19.00	47.53	02.011	98.46	•		82.24	109.41	104.35	105.29	67.25	108.10		90.00	86.92	44.57	75.62	91,36	105.19	98.73	
Lar	I LOW	68.75	17.07	45.23	44.49	30.4	41.48	15.99	17.55	99.99	45.83		20.64	74.92	43.42	34.60	90.16	35.54	47.64	39.12	50,35	74.10	45.24	48.76	69.36	18.93	35.14	24.63	50.03	00'+0	33,38	68.13	9.44	77.63	•	38.58	66.91	•		85.45	37.70		15.07	42.15	48.59	32.52	61.95	65.4
	Min	61.88	9.25	48.24	61.17	48.54	58,33	16.97	29.41	99.99	46.95	14.40	•	74.92	24.69	. 44	46.81	59.30		50.88	50.35	74.10	45.24	62.98	69.36	•			. 63	59.44	49,35	68.13		77.63	51.58	.;	66.91	.;	65.49		40.04			42.15	48.59			•
	_	_					-					_			- -				_		_	_	_	<u></u>	_								_		_				<u> </u>					-	-			_
	I High	355.49	112.98	342.67	201.10	231.90	188.73	85.38	23.90	582.60	312.18	75.77	169.24	382.08	250.80	91.60	200 83	198.74	198.71	290.60	273.48	325.71	222.07	287.78	314,77	167.60		202.54	26.32	231 87	219.05	373.33	-	395.52	198.90	224.43	339.27	• ;	394.41	50.00	979.02	235.65	92.02	279.91	247.80	206.20	289.90	40.0
90 00 00 00 00	Con	643.74	296.61	646.61	203.20	655.17	611.45	267,08	326.60	582.51	642.92	303.38	482.30	457.19	17.140	4.000	645.04	578 50	575.28	641.04	637.13	408.23	475.70	658.34	652.43	392.00	540.77	24.000	430.44	465.03	660.41	705.26	148.34	481.90	575.80	655.96	578.58	359.81	700.29	02.77	659.02	493.98	275,63	530.07	566.52	655.79	499.58	122.23
Large	I Low	375.04	•	380,54	. 600	226.37	184.83	74.51	•	582.52	324.51	75.66	163.05	383.01	320.93	220.102	218 43	188.89	•	298.61	273.43		227.62	271.95	•	156.04	281.94	242.79	2.60	204.71	222.06	362.72	58.29	399,33	188.79	229.28	339.81	114.22	408.80	24.75	979 OF	265.25	86.41	280.01	248.28	215.75	287.86	38.51
	Min	367.81	50.59	365.78	277.32	326.54	301.63	89.77	177.61	582.43	321.06	125.63	93.91	383.13	320.40	320.30	330 93	310.25	•	352,03	249.07	325.07	228.85	329.09	314.80	144.39	232,32	330.42	281.46	268 90	332.04	409,29	96'.29	395,54	283,33	347.12	339.70	124.52	408.95	90.18	349 02	264.53		280.33	246.07	374.00	285.24	32.83
	I High	356,39	128.10	342.89	72.502	232.40	188.65	110.62	22.18	491.10	315.85	•	131.49	378.75	241.03	107.00	186.53	221.06	170.07	266.10	249.46	379.94	241.75	239.59	288.57	105.90	194.00	10.502	205.20	338.41	213.80	343.47	66.11	381.75	222.29	224.79	310.91	129.35	399.76	41.8/	272 01	150.25	82.94	275.31	252.64	206.42	285.07	- a.c.
	Con	643,85	329.40	646.67	08.90	655.49	611.63	345.17	299.45	491.10	649.82	303.20	3/6.33	451.51	041.07	501.00	573.59	640.50	494.55	641.05	581.07	477.30	509.72	660.55	652.42	321.39	539.87	0.000	654 24	661.23	644.39	647.63	201.33	465.12	641.46	656.02	529.03	351.84	547.14	650.44	550.00	494.44	248.42	520.44	577.47	656.37	499.60	195.91
Medium Not LBCS	1 Low	375.14	109.80	380.99	211 71	225.95	184.88	97.04	88.73	491.10	328.15	75.80	125.23	3/8./5	361.03	20.00 8.4.00 8.4.00	193 19	210.00	173.91	274.16	249.46	379.94	241.75	225.49	288.57	99.05	179.08	254.10	30.000	293.68	217,28	352.28	78.13	381.75	211.70	229.38	310.91	110.87	409.11.	02.80	27. 22	169.92	77,55	275.31	252,64	217,28	285.07	61,81
	Min	367,42	56.12	365.75	300.04	325.86	301.84	116.44	162.67	491.10	324.35	125.61	131.49	378.75	305 30	308.808	297.29	344, 14	76.08	351.86	249.46	379,94	241.75	328.84	288.57	180.03	232.80	258.90	287.86	381.66	324.01	350,78	91,15	381.75	315,93	347.89	310.91	122.17	409.62	326.33	347 97	268.30	35,25	275.31	252.64	380.24	285.07	96,58
	જ		24.40	142.87	07.70) . •		29.11	22.18	491.10	287.13		53.83	378.75	20.120	136.38	2	110,53	76.08			379.94	241.75	98,65	•	36.01	89.54	20.4/	248 61	53.43	203.11	305,31		381,75	127.02		18.015	43.12	147.28	108.07	144.69	53.66		275,31		•	285.07	•
Medium LBCS		375.33	115.57	381.77	180.02	232.40	168.01	85.31	96.57	582.28	324.85	75.80	128.//		. 400	20.000	220.61	199.19		352.16	273.89	•	•	289.45	314.80	169.92	311.15	450.04	288 86	237.22	332.21	383.48			199.27	229.64	339.63	132,10	408.79	1 77 616	272.79	265.56				216.05		41.25
Mac	1 High						•	•		-	•	•		-	•		•	•	•			•	•	•		•	•	•	•	• .				•	•	•	•	•						•	1288.36			•
State		Alabama (Alaska	Arizona	California	Colorado	Connecticut	Delaware	District of C	Florida	Georgia	Hawaii	Idano	Todioos	Town	Kanaaa	Kentucky	Louisiana	Waine	Maryland	Massachusetts	Michigan	Winnesota [Mississippi	Wissouri	Montana	Nebraska	Nevada Nevada	ALTICOLUNIA MAN	New Maxico	New York	North Carolin	North Dakota	Ohito	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolin	Tonnesson	(a ka	Utah	Vermont	Virginia	Washington	West Virginia	Wisconsin	Wyoming

Notes Describing Table 2

-	=	Not Applicable
Min	=	Clusters with high concentrations of minorities
I Low	=	Clusters where the Preliminary Independent Listing housing unit count is at least 25 percent lower than the Decennial Master Address File (DMAF) count
I High	=	Clusters where the Preliminary Independent Listing count is at least 25 percent higher than the DMAF
Con	=	Clusters where the Preliminary Independent Listing count and the DMAF do not differ by more than 25 percent
SJ	=	Clusters initially classified as Medium for listing sample selection that have 80 or more Preliminary Independent List housing units
LBCS	=	Clusters that went through large block cluster subsampling
Not LBCS	=	Clusters that did not go through large block cluster subsampling
Medium	=	Clusters initially classified as Medium for listing sample selection
Large	=	Clusters initially classified as Large for listing sample selection

Table 3. Small Block Clusters Weights by Reduction Stratum and Small Block Cluster Subsampling Stratum

	Stratum	Stratum	Stratum	Stratum	Stratum 04
State	01	02	03	04-09	SJ LBCS
	,	7 2	30	04-03	OG EDOO
Alabama	1122.93	449.17		112.29	
Alaska	702.80	200.80	-	100.40	
Arizona	1156.48		428.33	428.33	
Arkansas	1110.54	401,40	133.80		
California	1199.48	466.91	466.91	466.91	-
Colorado	1152.59	291.80	291.80	,00.0.	•
Connecticut	1171.73		137.85	137.85	<u>.</u>
Delaware	342.00	76.00		, , , , ,	•
District of Columbia	254.00		•	•	
Florida	1177.06	386.22	257.48	257.48	•
Georgia	1021.63	400.33	218.36	109.18	•
Hawaii	1163.37		306.15		•
Idaho	1174.69	•		573.69	•
Illinois	836.31	308.11	176.06	88.03	•
Indiana	611.43	203.81	91.71	61.14	•
Iowa	474.97	174.15	94.99	47.50	•
Kansas	1102.19	385.45	34,33	113.37	•
Kentucky	1002.51	403.45	220.06	110.03	•
Louisiana	1170.94	334.55		334.55	•
Maine	1024.84	384.32	•	192.16	•
Maryland	1044.54	253.22	•	126.61	•
Massachusetts	1062.83	425.13	•	141.71	•
Michigan	1192.49	455.32	130.09	130.09	•
Minnesota	935.47	377.33	165.08	94.33	•
Mississippi	1112.14	441.33	264.80	176.53	•
Missouri	828.45	328.17	87.51	87.51	314,40
Montana	1131.89	447.49	67.51	447.49	314.40
Nebraska	921.98	328.16	93.76	93.76	•
Nevada	1194.27	320.10	30.70	632,26	•
New Hampshire	746.40	199.04	•	99.52	•
New Jersey	1150.66	435.38	-	33.72	•
New Mexico	1190.83	555.72	•	555.72	•
New York	1106.79	392.41	241,48	120.74	241.48
North Carolina	1149.06	419.66	239.80	119.90	239.80
North Dakota	1148.22	370.39	200.00	148.16	203.00
Ohio	819.82	354.52	147.71	88.63	•
Oklahoma	1014.26	371.07	,	123.69	•
Oregon	1171.69	568.09	568.09	568.09	•
Pennsylvania	998.78	409.76	204.88	102.44	•
Rhode Island	364.95	40.55	40.55	102.44	•
South Carolina	1068.42	405.48	231.71	115.85	•
South Dakota	1112.00	347.50	201171	139.00	
Tennessee	1115.57	352.29	176.14	117.43	•
Texas	1196.52	450.26	375.21	375.21	500.29
Utah	1173.84			552,39	300,20
Vermont	552.57	184.19	92.10	92.10	•
Virginia	1182.79		265.80	132.90	•
Washington	1162.66	400.26		400.26	-
West Virginia	1106.13	425.43	170.17		-
Wisconsin	850.62	260.39	173,60	86.80	·
Wyoming	1182.96		•	617.19	
, -···a	,	•	•		-

Note:

 Stratum 01
 =

 Stratum 02
 =

 Stratum 03
 =

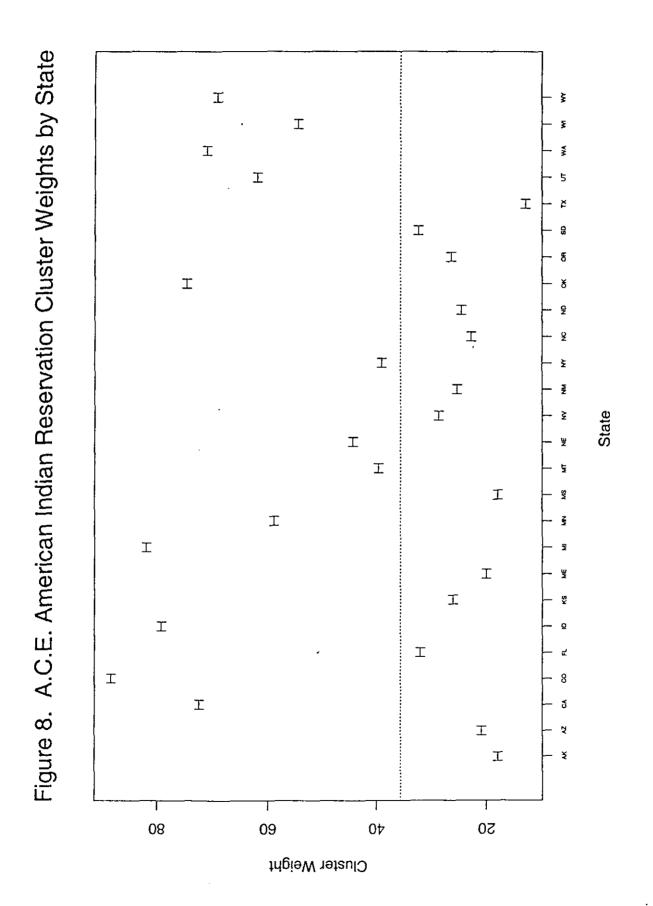
 Stratum 04-09
 =

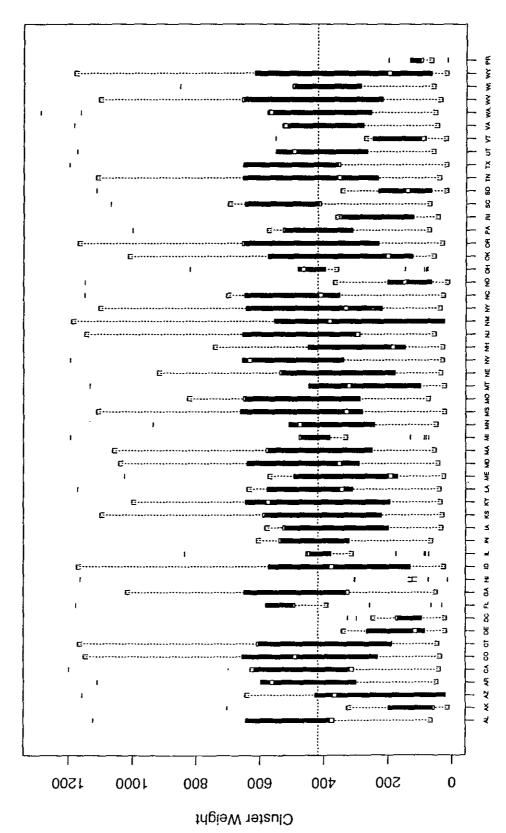
areas, in American Indi

Small Block Clusters with 0-2 Housing Units Small Block Clusters with 3-5 Housing Units Small Block Clusters with 6-9 Housing Units Small Block Clusters with 10 or more housing units, in List/Enumerate areas, in American Indian Reservations, or in other American Indian Country

Stratum 04 SJ LBCS =

Country
Clusters initially classified as small for listing sample selection,
which then became small stratum jumpers because the preliminary
enhanced list had 80 or more housing units in these clusters. Only
small clusters in this stratum went through large block cluster
subsampling.




Table 4. Summary of the Weights from AIR Block Clusters

State	l Small	Med. Large
Otate	Omati	l raige l
Alaska	1 .	18.00
Arizona	428.33	20.85
California	466.91	j 72.36 j
Colorado	291.80	88.50
Florida		j 32.00 j
Idaho	573.69	79.17
Iowa	47.50	i . i
Kansas	j .	j 26.00 j
Maine		20.00
Michigan	130.09	82.00
Minnesota	94.33	58.90
Mississippi	1 .	18.00
Montana	447.49	39.63
Nebraska	93.76	44.33
Nevada	632.26	28.60
New Mexico	555.72	[25.27]
New York	120.74	39.00
North Carolin		22.75
North Dakota	148.16	24.50
Oklahoma	123.69	74.63
Oregon	568.09	26.33
South Dakota	139.00	32.26
Texas	1 .	13.00
Utah	552.39	61.86
Washington	400.26	71.00
Wisconsin	86.80	54.40
Wyoming	617.19	69.00

Table 5. Summary of the Weights from PR Block Clusters

	State)	Small 0-2	Small 3-5	Small 6+	Medium Not LBCS		Large lot LBCS	Large LBCS	
	Puerto	Rico	197.55	75.53	60.43	92.63	132.89	16.56	132.84	
Notes:										
Small C	0-2	=		initially nt List ho			for listing	sample s	selection that	have 0-2
Small 3	i-5	=		initially ont List ho			for listing	sample s	selection that	have 3-5
Small 6	i+	=	_	•		d as Small ousing units	•	sample s	selection that	have more
Medium		=	Clusters	initially (classifie	d as Medium	for listin	g sample	selection	
Large		=	Clusters	initially	classifie	d as Large	for listing	sample s	selection	
Not LBC	s	=	Clusters	that d id n	ot go thr	ough large	block clust	er subsam	pling	
LBCS		=	Clusters	that went	through 1	arge block	cluster sub	sampling		

Figure 9. A.C.E. Cluster Weights by State

State

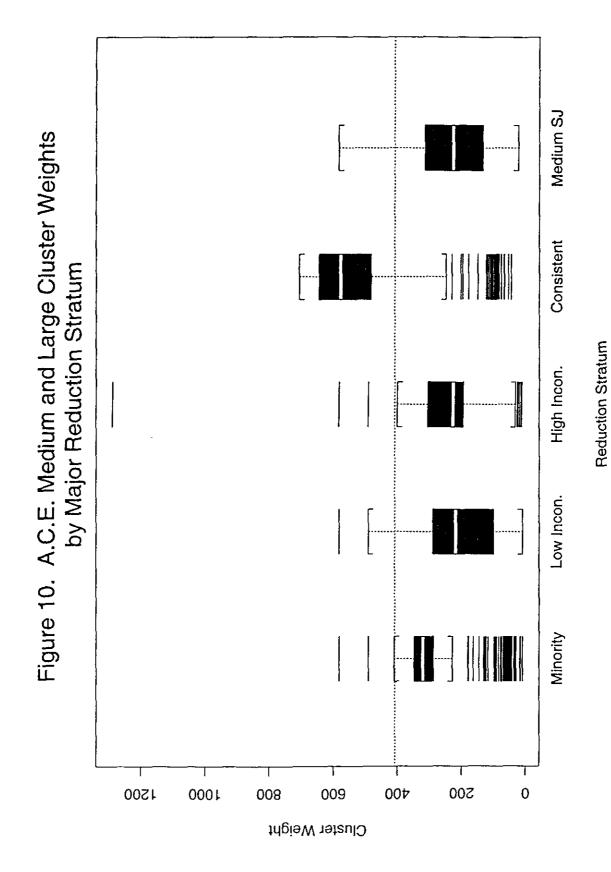
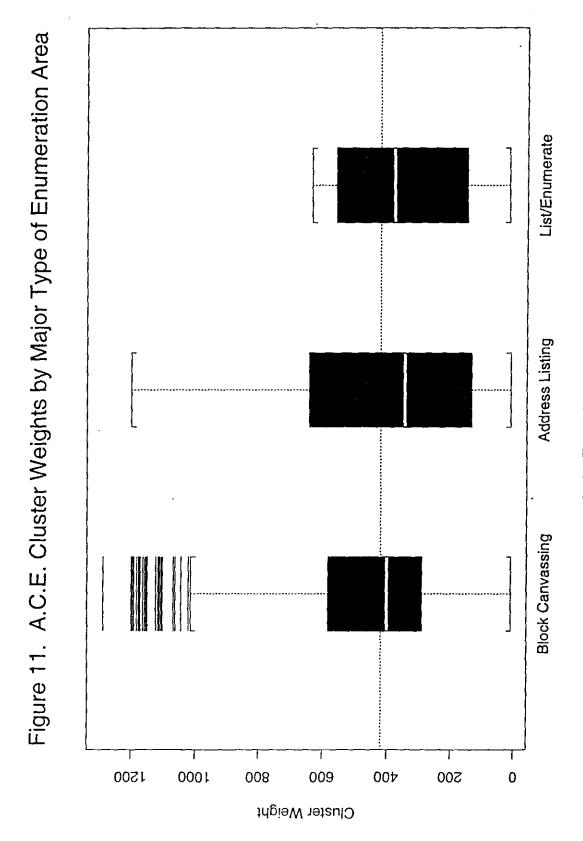


Table 6. Distribution of Clusters and Interview HUs by Major Type of Enumeration Area Group

Major Type of Enumeration Area	Clusters	Interview HUs
Block Canvassing	7,799	236,098
Address Listing	3,084	61,734
List/Enumerate	420	3,081
Total for US	11,303 ======	300,913
Puerto Rico	499	13,736
	=#====	===== =
Grand Total	11,802	314,649


Notes:

Block Canvasssing includes Type of Enumeration Area Codes 1, 6, 7, and 8.

Address Listing includes Type of Enumeration Area Codes 2, 5, and 9.

List/Enumerate includes Type of Enumeration Area Code 3.

Puerto Rico is entirely in the Address Listing Major Type of Enumeration Area but is not included in the Address Listing numbers.

Major Type of Enumeration Area

Table 7. Distribution of Clusters and Interview HUs by A.C.E. Regional Office

ACERO	ACERO Name	Clusters	Interview HUs
21	Boston	1,411	37,240
22	New York	498	17,434
23	Philadelphia	827	24,558
24	Detroit	801	23,199
25	Chicago	825	23,819
26	Kansas City	970	22,702
27	Seattle	946	24,050
28	Charlotte	1,041	29,027
29	Atlanta	970	27,466
30	Dallas	1,116	27,713
31	Denver	1,543	31,048
32	Los Angeles	854	26,393
	•	=====	======
	Total	11,802	314,649

Note: Puerto Rico is included in the Boston ACERO.